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QUIZ

How to measure 
classification errors?

Answer: Count the number of objects that are misclassified.

How to measure 
regression errors?

Answer: Measure the distance between 
the data points and the fitted regression line.
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REGRESSION

Regression is basically “fitting a line”, e.g., with linear functions.
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Simple linear regression Polynomial regression

y = a x + b

y = a1 x1 + a2 x2 + . . . + ai xi + b

y = a1 x + a2 x2 + a3 x3 + . . . + ai xi + b

y = a10 x1 + a01 x2 + a11 x1x2 +
a20 x2

1 + a02 x2
2 + a22 x2

1x2
2 + . . . + b

Univariate

Multivariate



REGRESSION

Some cases require non-linear, sometimes non-parametric methods.
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REGRESSION

Some cases require non-linear, sometimes non-parametric methods.
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NON LINEARITY

Non-linear problems can be transformed into linear ones (sometimes).  
For instance, by transforming the data, by mapping data points on 
different coordinates.  

 
          (e.g., SVM uses the kernel trick)
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OVER-FITTING

Perfect results are suspicious.  
Errors may be minimal for one dataset, but not for other datasets.
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Low errors may conceal underlying issues and inaccurate assumptions.

UNDER-FITTING
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Low errors may conceal underlying issues and inaccurate assumptions.

UNDER-FITTING
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VISUALIZING RESIDUALS
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Residuals Vs Fitted and QQ Plots are typical graphs  
(e.g., in basic R output). 
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Regression

̂ y
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ax
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b

̂ y
=

a 1
x

+
a 2

x2
+

a 3
x3

+
b

y
−

̂ y
̂y = a1x + a2x2 + a3x3 + b

̂y = ax + b

y
−

̂ y

RESIDUALS VERSUS FITTED



RESIDUALS VERSUS FITTED

�14[1] Faraway, Linear Models with R (2005, p. 59)



VISUALIZING RESIDUALS
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Two typical plots (e.g., basic R output). 



QQ PLOT
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QQ PLOT
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QQ PLOT
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QQ PLOT
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16% of data points



QQ PLOT
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16% of data points



QQ PLOT
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QQ PLOT
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QQ PLOT



Regression

̂ y
=

ax
+

b

̂ y
=

a 1
x

+
a 2

x2
+

a 3
x3

+
b

y
−

̂ y

̂y = a1x + a2x2 + a3x3 + b

̂y = ax + b

y
−

̂ y

EXAMPLE



TEST SET 
TRAINING SET 
TARGET SET

DIGITAL SOCIETY SCHOOL

EMMA BEAUXIS-AUSSALET

e.m.a.l.beauxis@hva.nl



BASIC ERRORS
• Classification errors are like grain quality.

“How many stones and straws  
are in this bag of grain?”

Elements are in the right category, or not.



BASIC ERRORS
• Classification errors are like grain quality.

“How many stones and straws  
are in this bag of grain?”

• Regression errors are like nutritional content.

“This much cholesterol  
is in my cake, really?”

Quantities are over- or under-estimated, or not.

Elements are in the right category, or not.



TEST SETS
• Only a sample is tested

MeasureSample



TEST SETS
• Only a sample is tested to estimate the errors in entire batches.

EstimateMeasureSample
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TEST SETS
• Only a sample is tested to estimate the errors in entire batches.

EstimateMeasureSample

“How many errors  
for this test set?”

“Let's run the AI 
and count them.”

“So how many errors 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TEST SET vs. TRAINING SET vs. TARGET SET
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TEST SET vs. TRAINING SET vs. TARGET SET

EstimateMeasure

“Let's run the AI 
and count them.”
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“How many errors  
for this test set?”

• Try the AI with test sets.

Should be a random sample.

Test set



TEST SET vs. TRAINING SET vs. TARGET SET

EstimateTraining set

“Let's run the AI 
and count them.”

“So how many errors 
in this other set?”

“How many errors  
for this test set?”

• Try the AI with test sets. Make the AI model with training sets.

Should be a random sample. May be a non-random sample.

Test set



TEST SET vs. TRAINING SET vs. TARGET SET

Target set

Should be a random sample.

“Let's run the AI 
and count them.”

“So how many errors 
in this other set?”

May be a non-random sample. May be a non-random sample.

“How many errors  
for this test set?”

• Try the AI with test sets. Make the AI model with training sets. Apply the AI on target sets.

Training setTest set



CHOOSING TEST & TRAINING SETS

Target set

Should be a random sample.

“Let's run the AI 
and count them.”

“So how many errors 
in this other set?”

May be a non-random sample. May be a non-random sample.

“How many errors  
for this test set?”

Training setTest set

• Test sets are randomly sampled to represent the target set. Training sets may not. 
AI models may work best if training sets are adjusted (e.g., downsampling or upsampling, 
outlier removal).



VARIANCE IN PRACTICE

Target set
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for this test set?”

Training setTest set



VARIANCE IN PRACTICE
• The training set is fixed.

Target set

Should be a random sample.

“Let's run the AI 
and count them.”

“So how many errors 
in this other set?”

May be a non-random sample. May be a non-random sample.

“How many errors  
for this test set?”

Test set Training set



VARIANCE IN PRACTICE

“Let's run the AI 
and count them.”

“So how many errors 
in this other set?”

“How many errors  
for this test set?”

Should be a random sample. May be a non-random sample. May be a non-random sample.

Target setTest set Training set

• The test set may differ from the target set to assess.



“Let's run the AI 
and count them.”

“So how many errors 
in this other set?”

“How many errors  
for this test set?”

Should be a random sample. May be a non-random sample. May be a non-random sample.

Target setTest set

VARIANCE IN PRACTICE
• The test set may differ from the target set to assess.

• The target sets may also differ among each other.

Training set



RANDOM VARIANCE

Target setTest set



RANDOM VARIANCE

Entire Population (all possible elements)

Target setTest set

• Test and target sets are random samples from the same population.

random sample random sample



RANDOM VARIANCE

Entire Population (all possible elements)

Target setTest set

• Error rates in random samples have known variance and distribution from sampling theory [3].

[3] Cochran, Sampling techniques. 1977.

random sample random sample



RANDOM VARIANCE

Entire Population (all possible elements)

Target setTest set

• Error rates in random samples have known variance and distribution from sampling theory [3]. 

• Smaller samples give estimates with higher variance.

[3] Cochran, Sampling techniques (1977).

random sample random sample

test set size



VARIANCE IN PRACTICE

Entire Population (all possible elements)

random sample random sample

Target setTest set

• We use a test set to estimate errors in a target set. 

estimate errors in target set



VARIANCE IN PRACTICE

Entire Population (all possible elements)

random sample random sample

Target setTest set

• We use a test set to estimate errors in a target set.  
These error estimates have added variance [4].

[4] Beauxis-Aussalet & Hardman, Extended Methods to Handle Classification Bias (2017).

estimate errors in target set



VARIANCE IN PRACTICE

Entire Population (all possible elements)

random sample random sample

Target setTest set

[4] Beauxis-Aussalet & Hardman, Extended Methods to Handle Classification Bias (2017).

estimate errors in target set

• We use a test set to estimate errors in a target set.  
These error estimates have added variance [4].
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VARIANCE IN PRACTICE

Entire Population (all possible elements)

random sample random sample

Target setTest set

[4] Beauxis-Aussalet & Hardman, Extended Methods to Handle Classification Bias (2017).

estimate errors in target set

• We use a test set to estimate errors in a target set.  
These error estimates have added variance [4].

test set size target set size



VARIANCE IN PRACTICE

Entire Population (all possible elements)

random sample random sample

Target setTest set

[4] Beauxis-Aussalet & Hardman, Extended Methods to Handle Classification Bias (2017).

estimate errors in target set

• We use a test set to estimate errors in a target set.  
These error estimates have added variance [4]. 

• Smaller test or target sets give estimates with higher variance.
test set size target set size
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Examples of 
Happy Faces

Examples of  
Sad Faces
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Test sets contain examples of correct classifications,  
and are used to measure the errors.

CLASSIFICATION ERRORS



Chance of being happy �55

Classifiers often have tuning parameters.

CLASSIFICATION ERRORS



Chance of being happy �56

Classifiers often have tuning parameters,  
such as thresholds for separating the classes.
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Classifiers often have tuning parameters,  
such as thresholds for separating the classes.

CLASSIFICATION ERRORS



sad happy
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Classifiers often have tuning parameters,  
such as thresholds for separating the classes.

CLASSIFICATION ERRORS



sad happy

�59Chance of being happy 

TUNING THE ERRORS

Tuning parameters can balance errors between classes.



TUNING THE ERRORS
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sad happy

Tuning parameters can balance errors between classes.



TUNING THE ERRORS
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sad happy

Chance of being happy 

Beware that class proportions may vary over time, and affect the errors.



TUNING THE ERRORS

�62Chance of being happy 

sad happy

Beware that class proportions may vary over time, affecting the errors.



Chance of cells being cancerous 

TUNING THE ERRORS
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cancerous healthy

The tolerance to errors depends on the use case.



TUNING THE ERRORS
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damaged undamaged

The tolerance to errors depends on the use case.

Chance of donuts being undamaged 



Chance of donuts being undamaged 

TUNING THE ERRORS
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damaged undamaged

The tolerance to errors depends on the use case.



TUNING THE ERRORS
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damaged undamaged

Beware that real life conditions entail unexpected anomalies.

Chance of donuts being undamaged 



Choices & tradeoffs are involved at all steps of the implementation.

PRACTICAL ISSUES

‣ Datasets are only samples (outliers, biases, variability).

‣ Tuning parameters cannot optimise all real-life cases. 

‣ Error measurements may be abstract, complex and incomplete.

‣ Real-life conditions may differ from the test conditions.
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QUESTION / 
DISCUSSION
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