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ORDINAL DATA

Ordinal data have continuous relationship between their ‘categories’. 
For instance, numerical data are often discretised (e.g., ratings).
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Linear regressions can be fitted on ordinal data.
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PREDICT CATEGORICAL DATA

Polynomial regressions may be fitted on categorical data, but with many parameters… 
but they are not interpretable.
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Polynomial regressions may be fitted on categorical data, but with many parameters… 
but they are not interpretable… and not robust to noise!
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We need something different ! 
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REGRESSION ISSUES

With multiclass data, linear or polynomial regressions have large bias. 

Such bias depend on how numerical class labels are ordered (arbitrarily), 
and on random noise.
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REGRESSION ISSUES

Predictions from linear or polynomial regressions are unbounded,  
thus hard to interpret.  

For instance, such models can predict a class that does not exist.
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Let’s put bounds on the predictions….



LOGISTIC REGRESSION

We can transform linear regressions into a sigmoid function, a s-shaped line,  
using the slope and intercept of the straight line.
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̂y = ax + b
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̂y = ax + b
Fit that line
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̂y = ax + b
Fit that line

̂P (happy) =
1

1 + e−(ax+b)



LOGISTIC REGRESSION

We can transform linear regressions into a sigmoid function, a s-shaped line,  
using the slope and intercept of the straight line.

0

0,5

1

Pr
ob

ab
ilit

y 
 

of
 b

ei
ng

 h
ap

py

Variable X
sad

happy

�17

Fit that line

o(ax+b)
̂P (happy) =

1
1 + e−(ax+b)

̂y = ax + b



LOGISTIC REGRESSION

The sigmoid function has bonded results that can be interpreted as probabilities  
of class membership (the probability that a data point belongs to a class).
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Fit that line

̂P (happy) =
1

1 + e−(ax+b)



LOGISTIC REGRESSION
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̂P (neutral) =
1

1 + e−(α0 + α1x)

̂P (happy) =
1

1 + e−(β0 + β1x)

̂P (sad) =
1

1 + e−(ζ0 + ζ1x)

Multiclass problems require  
one regression model per class.

The predicted class is the one having  
the maximum probability.



LOGISTIC REGRESSION
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̂P (neutral) =
1

1 + e−(α0 + α1x1 + α2x2 + ... )

̂P (happy) =
1

1 + e−(β0 + β1x1 + β2x2 + ... )

̂P (sad) =
1

1 + e−(ζ0 + ζ1x1 + ζ2x2 + ... )

Multivariate logistic regressions  
add variables within the embedded 
linear regression.



DEEP DIVE  
IN LOGISTIC 
REGRESSION

DIGITAL SOCIETY SCHOOL

DATA-DRIVEN TRANSFORMATION

EMMA BEAUXIS-AUSSALET

e.m.a.l.beauxis@hva.nl



�22

HOW DOES IT WORK ?

https://www.youtube.com/watch?v=vN5cNN2-HWE

y

It is just fitting a straight regression line, 
…but after transforming the data.

https://www.youtube.com/watch?v=vN5cNN2-HWE

https://www.youtube.com/watch?v=vN5cNN2-HWE
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HOW DOES IT WORK ?

https://www.youtube.com/watch?v=vN5cNN2-HWE

y

How do we switch  
from there to there?
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HOW DOES IT WORK ?

https://www.youtube.com/watch?v=vN5cNN2-HWE

y =
1

1 + e−( ... )

y
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1 − p )
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HOW DOES IT WORK ?

https://www.youtube.com/watch?v=vN5cNN2-HWE

x

̂P (happy) =
1

1 + e−( ax+b )

https://www.youtube.com/watch?v=vN5cNN2-HWE
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HOW DOES IT WORK ?

https://www.youtube.com/watch?v=vN5cNN2-HWE

x

̂P (happy) =
1

1 + e−( ax+b )

https://www.youtube.com/watch?v=vN5cNN2-HWE


EXAMPLE

DIGITAL SOCIETY SCHOOL

DATA-DRIVEN TRANSFORMATION

EMMA BEAUXIS-AUSSALET

e.m.a.l.beauxis@hva.nl



EXAMPLE WITH BINARY DATA
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EXAMPLE WITH BINARY DATA
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Different thresholds can be used to assign the final class to each data points.
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